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Uniform and nonuniform textures of a nematic liquid crystal in contact
with an inhomogeneous substrate

S. Kondrat and A. Poniewierski
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
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A semi-infinite sample of a nematic liquid crystal in contact with a flat solid substrate, possessing an
alternating stripe pattern of planar and homeotropic anchoring, is studied in the framework of the Frank-Oseen
model. The case of strong anchoring on one of the stripes is treated by means of bifurcation analysis, whereas
the case of weak anchoring is studied by means of numerical minimization of the free energy functional. We
find a second order phase transition between the uniform homeotropic or planar alignment and a distorted
director configuration. The effect of the stripe width and the anchoring strength on the location of this transition
and on the bulk orientation of the nematic director is also studied.
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I. INTRODUCTION

Nematic liquid crystals are anisotropic fluids exhibiting
long range orientational order of uniaxial symmetry, with t

local symmetry axis defined by a unit vectorn̂ called the
director. It is well known that the surface of a solid substra
as well as other limiting surfaces, have the ability to orienn̂
along a well defined direction called the easy axis@1#. On the
phenomenological level the easy axis is defined as the or
tation of n̂ preferred by the liquid-crystal–substrate intera
tions, i.e., that minimizing the surface free energyFs in the
absence of bulk distortions or external fields. This subst
induced alignment of liquid crystals, known as anchori
@1,2#, has important practical applications. To achieve
desired director orientation and anchoring strength vari
substrates and surface treatments are used@2–7#.

In many model studies of liquid-cystal–substrate int
faces the details of surface structure at the nanometer s
are neglected and the substrate surface is treated as hom
neous@8–12#. On the other hand, a long time ago Berrem
@13# showed that due to the elastic strain energy anisotro
surface roughness can induce a molecular orientation par
to the direction of grooves produced by rubbing the subst
surface. To obtain the azimuthal anchoring energy he
sumed a sinusoidal shape of the surface, with wavelen
;200 Å and amplitude;10 Å, and the director locally
parallel to the surface, i.e., strong polar anchoring. The la
assumption was generalized by Faetti@14#, who took into
account a finite value of the polar anchoring energy. Anot
type of nonuniform surface was considered by Barberoet al.
@15#. In their work, the surface roughness is not conside
explicitly; nevertheless, the spatial distribution of easy dir
tions is taken into account. This is achieved by assuming
the surface has a periodic structure with two stripes cha
terized by different easy directions and, in general, differ
widths. In addition,n̂ is constrained to stay in the plan
normal to the stripes, and in the case of weak anchoring
quadratic approximation for the anchoring energy is appli
The latter assumption implies that the easy directions sho
not differ too much from each other. Thus, this model is us
to study the effective easy direction induced by the perio
substrate as well as the effective surface energy.
1063-651X/2001/64~3!/031709~9!/$20.00 64 0317
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In more recent work, Qian and Sheng@16,17# also applied
the idea of a periodic substrate to an alternating stripe pat
of random planar and homeotropic substrate potentials, w
periodicity in the mesoscopic range, i.e.,;0.5 mm or less.
While the prior studies of inhomogeneous substrates con
ered the elastic energy only in the Frank-Oseen form, Q
and Sheng apply the Landau–de Gennes formalism@1#,
where the tensor nematic order parameterQ is used instead
of n̂. Assuming stripes of equal width they found two stab
states of the bulk director: theyz state, withn̂ in the plane
normal to the surface and parallel to the stripes, and thx
state, withn̂ parallel to the surface and normal to the stripe
A first order phase transition between these two states ca
induced either by changing the temperature or by chang
the periodicity of the structure. It is argued that the transit
occurs when the elastic energy becomes unfavorably la
compared to the surface alignment potential, and this is
served for decreasing periodicity. This study shows that
spite the azimuthal degeneracy in each stripe the wh
structure does align the liquid crystal in a well defined a
muthal direction. Indeed, in a very recent experimental wo
Lee and Clark@18# have demonstrated that molecular-sca
anisotropy or roughness is not required to achieve liq
crystal alignment. They showed that the alignment can
induced by a surface lithographically divided into two di
tinct molecularly smooth isotropic regions. Thus, it is go
erned only by the pattern of boundary lines between the
tropic regions and by the liquid crystal elasticity. Th
simplest pattern studied experimentally in@18# consisted of
homeotropic and random planar stripes of total width in
range of 10mm.

In this paper, we apply the model introduced by Barbe
et al. in @15# to the specific case of mixed homeotropic a
planar anchoring, where the latter is in the direction norm
to the stripes. With this choice of anchoring direction it
possible that despite the periodic surface structure the a
cent nematic liquid crystal will remain uniform. This poss
bility was not considered in@15#, however. Therefore, we
study in detail the relation between the width and the anch
ing strength of the stripes and the director configuration
the surface region and in the bulk. In particular, we find t
stability limits of the homeotropic and planar textures
terms of the model parameters. To obtain the phase diag
©2001 The American Physical Society09-1
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we apply the Frank-Oseen formalism and the Rap
Papoular@19# form of the anchoring energy. We also co
sider the limit of strong anchoring on one of the stripes a
the competition between the alignments induced by the w
anchoring and strong anchoring stripes when the width of
latter tends to zero.

Our paper is organized as follows. In Sec. II, we recall
model introduced in@15#. The case of strong anchoring o
one of the stripes is studied in Sec. III by means of a bif
cation analysis. In Sec. IV weak anchoring on both stripe
assumed. To study this case we first derive the free energ
the system as a functional of the surface director alone. M
mization of an approximate form of this functional leads to
Schrödinger type differential equation, which can be eas
solved~Sec. IV A!. The results of the exact numerical min
mization of the free energy are presented in Sec. IV B.
nally, Sec. V is devoted to the conclusions.

II. THE MODEL

We consider a flat substrate whose surface is physicall
chemically inhomogeneous. This inhomogeneity is char
terized by a periodic stripe pattern of wavelengthp along the
x direction; thez axis is perpendicular to the surface, and t
y axis is parallel to the stripes. We assume homeotropic
choring on the stripe 0<x,p1, wherep1 is its width, and
planar homogeneous anchoring along thex direction on the
stripep1<x,p. Due to the translational invariance in they

direction n̂ depends only onx and z. We also restrict our-
selves to the case whenn̂ is everywhere parallel to thexz

plane, i.e.,n̂5 x̂ sinu1ẑcosu ~no twist deformation!. As-
suming that the bend and splay elastic constants are e
(K15K35K), which is not far from experimental data~see,
e.g., @20,21#! and is consistent with the Landau–de Genn
theory, we obtain the distortion free energy per unit len
and per period,

Fd5
K

2E0

p

dxE
0

`

dz~“u!2. ~2.1!

For the surface free energy we use the Rapini-Papo
expression@19#

Fs5
1

2E0

p

dxw~x!sin2u0~x!, ~2.2!

where u0(x)5u(x,z50), and w(x) is the anchoring
strength. In the homeotropic region (0<x,p1) w(x)5w1,
whereas in the planar region (p1<x,p) w(x)52w2, with
w1 ,w2>0. Thus the total free energy per period as a fu
tional of u(x,z) assumes the following form:

F5
K

2E0

p

dxE
0

`

dz~“u!21
w1

2 E
0

p1
dx sin2u0~x!

2
w2

2 E
p1

p

dx sin2u0~x!. ~2.3!

Minimization of F leads to the Laplace equation
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¹2u~x,z!50 ~2.4!

with the boundary conditions

K~]u/]z!uz505w1u0~x! for 0<x,p1 ,
~2.5!

K~]u/]z!uz5052w2u0~x! for p1<x,p.

III. STRONG ANCHORING LIMIT

When the nematic-nematicVnn and the nematic-substrat
Vns interactions are of the same order then the extrapola
lengthb5K/w;aVnn /Vns;a, wherea denotes a molecula
dimension. Then, in the continuum limit, it is justified to p
b50 and assume that the director orientation at the surf
is fixed @1#. This is known as the strong anchoring limit. L
us assume that the strong anchoring occurs on one of
stripes, and we take it to be the stripe with homeotro
anchoring. This means that the extrapolation lengthb1
5K/w150 andu0(x)50, for 0<x,p1. The planar anchor-
ing on the stripep1<x,p is assumed to be weak, i.e.,b2
5K/w2Þ0.

It is rather obvious that for smallw2 the strong homeo-
tropic anchoring prevails andu(x,z)50 everywhere. How-
ever, the decrease of the widthp1 or the increase ofw2
should effectively weaken the effect of strong anchoring a
eventually would result in a nonuniform director configur
tion. To investigate the loss of stability of the uniform
u0(x,z)50 state the free energy in Eq.~2.3! is approximated
by

F5
K

2E0

p

dxE
0

`

dz@“u~x,z!#22
w2

2 E
p1

p

dx@u0~x!#2,

~3.1!

which means that smallu0 is assumed. Now we seek a per
odic solution of the Laplace equation~2.4! satisfying the
boundary conditionu0(x)50, for 0<x,p1. A general peri-
odic solution of the Laplace equation has the form of t
Fourier expansion

u~x,z!5 (
n50

`

@un
(s)sin~knx!1un

(c)cos~knx!#e2nkz,

~3.2!

wherek52p/p, andun
(s) andun

(c) are to be determined from
the boundary condition. The distortion part of the free ene
takes the following simple form:

Fd5
pK

2 (
n51

`

n@~un
(s)!21~un

(c)!2#. ~3.3!

In general,u0(x) satisfying the boundary condition for 0
<x,p1 and continuous atx5p1 andx5p is given by

u0~x!5Q~x2p1! f ~x!, ~3.4!

where Q(x) is the Heaviside step function andf (x) is an
arbitrary function satisfying the continuity conditionf (p1)
5 f (p)50. Therefore, it can be expressed as follows:
9-2
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f ~x!5 (
n51

`

Bn sin@k8n~x2p1!#, ~3.5!

wherek85p/p2 andp25p2p1. To study the stability of the
u(x,z)50 solution we expressF in terms of the amplitudes
Bn . For the surface part we have

Fs52
p2w2

4 (
n51

`

Bn
2 , ~3.6!

and to obtainFd we first findun
(s) andun

(c) from Eqs.~3.2!,
~3.3!, and~3.5!, which for n.0 gives

un
(s)5

2

pE0

p

u0~x!sin~nkx!dx

5
p

2pp2
(
n8

Bn8

n8sin~2pnp1 /p!

~n8p/2p2!22n2
, ~3.7!
tr
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03170
un
(c)5

2

pE0

p

u0~x!cos~nkx!dx

5
p

2pp2
(
n8

Bn8

n8@cos~2pnp1 /p!2~21!n8#

~n8p/2p2!22n2
.

~3.8!

Finally, we obtain for the free energy

F5
K

4 (
n851

`

(
n951

` H n8n9Cn8n92
p2

b2
dn8n9J Bn8Bn9 ,

~3.9!

wherednm is the Kronecker delta symbol, and
Cn8n95
p2

2pp2
2 (

n51

`
n$11~21!n81n92@~21!n81~21!n9#cos~2pnp1 /p!%

@~n8p/2p2!22n2#@~n9p/2p2!22n2#
. ~3.10!
file

hy

-
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When the quadratic form~3.9! is positive definite the uni-
form solution u50 is stable. At fixedp1 /p2, the loss of
stability of theu50 solution occurs when the ratiop2 /b2
becomes equal to the smallest eigenvalue of the ma
Cn8n9 . Truncation of the Fourier expansion~3.5! after the
first term results in the following condition for the stabilit
limit:

p2

b2
5C11~p1 /p2!5

~11p1 /p2!2

p
c~p1 /p2!, ~3.11!

where

c~x!5 (
n51

`

n
11cos@2pnx/~11x!#

@~11x!2/42n2#2
. ~3.12!

From this simple approximation we obtain the qualitative
correct shape of the bifurcation line, which is shown in F
1. However, the rigorous procedure requires diagonaliza
of the quadratic form~3.9!. We have performed numerica
diagonalization, truncating the Fourier expansion off (x) at
n5N, for various values ofN, and the bifurcation lines ob
tained in this way are presented in Fig. 1. In Fig. 2, we p
p2 /b2 againstN for selected points on the bifurcation line.
is clear that the largeN asymptotic behavior ofp2 /b2 de-
pends on the ratiop1 /p2. We observe that forp1 /p2Þ0 the
ratio p2 /b2 tends to a nonzero limit whenN→`. However,
the casep1 /p250 is different as thenp2 /b2 seems to tend to
zero, albeit very slowly. Since the limitN→` should be
performed first this behavior suggests thatp2 /b2 as a func-
tion of p1 /p2 is discontinuous atp1 /p250, i.e., it has a
ix

.
n

t

nonzero limit whenp1 /p2→0 but vanishes whenp150. Of
course, the matrixCn8n9 is by definition positive definite
@see Eq.~3.3!# and Fd50 only if u05const, for 0,x,p,
which is incompatible with the boundary conditions atx
50 andx5p, however. On the other hand, a constant pro
can result from the Fourier expansion~3.5! when the number
of Fourier components tends to infinity. This explains w
the smallest eigenvalue ofCn8n9 vanishes forp150. When

FIG. 1. Bifurcation line showing the stability limit of the uni
form homeotropic texture in the case of strong anchoring on
homeotropic stripe, obtained for different numbersN of Fourier
components in the expansion of a nonuniform surface perturba
@see Eq.~3.5!#. The inset shows the region of smallp1 /p2 for N
5200 ~diamonds!, N5500 ~squares!, andN51000 ~circles!.
9-3
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p1Þ0 the above argumentation does not hold, however,
causeFd in Eq. ~3.3! diverges ifu05const forp1,x,p.

IV. WEAK ANCHORING

In this section, we assume that anchoring on both
planar and the homeotropic stripes is of finite strength, wh
is usually referred to as weak anchoring. Now the substra
characterized by two nonzero extrapolation lengthsb1
5K/w1 andb25K/w2, and the free energy of the system
given by Eq.~2.3!. In the absence of the distortion term
Eq. ~2.3! there would be only homogeneous statesu(x,z)
50 and u(x,z)5p/2, and the transition between the
would occur when

b1

b2
5

p1

p2
. ~4.1!

To take into account distortions we proceed as follows. Fi
we minimize Fd with respect to all functionsu(x,z) that
satisfy the boundary conditionu(x,z50)5u0(x), where
u0(x) is an arbitrary continuous and periodic~with the pe-
riod p) function of x. This minimization results in the
Laplace equation¹2u50; thus,Fd can be transformed to

2Fd /K5E
0

p

dxE
0

`

dz~“u!2

5E
0

p

dxE
0

`

dz@“~u“u!2¹2u#

52 lim
z→0

E
0

p

dxu
]u

]z
, ~4.2!

where we have used the periodicity ofu and the bulk condi-
tion u→const forz→`. Now Fd can be explicitly expresse
as a functional ofu0(x). To show this we presentu(x,z) as
a convolution

FIG. 2. Bifurcation value ofp2 /b2 as a function of the numbe
of Fourier components, for a few values of the ratiop1 /p2.
03170
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u~x,z!5
1

pE0

p

dx8u0~x8!g~x82x,z!, ~4.3!

where the propagatorg(x,z) satisfies the Laplace equatio
with the boundary condition

lim
z→0

g~x,z!5pd~x!, ~4.4!

whered(x) is the Diracd function. It is straightforward to
show that

g~x,z!5 (
n52`

`

exp~2unukz1 inkx! ~4.5!

with k52p/p. Note also that becauseg(x,z)→1 when z
→` the bulk value ofu can be expressed from Eq.~4.3! in
terms ofu0 as follows:

ub5
1

pE0

p

dxu0~x!. ~4.6!

For convenience we define a complex function

G~z!5 (
n51

`

e2knz5
e2kz

12e2kz
; ~4.7!

hence,

g~x,z!511G~z1 ix !1G~z2 ix !511G1~x,z!,
~4.8!

where

G1~x,z!5
cos~kx!2e2kz

cosh~kz!2cos~kx!
. ~4.9!

Substituting Eqs.~4.3! and~4.8! into Eq.~4.2! and replac-
ing ]G(z6 ix8)/]z by 7 i ]G(z6 ix8)/]x8 we obtain

2Fd /K52
i

p
lim
z→0

E
0

p

dxE
0

p

dx8u0~x!u0~x8!
]

]x8
G2~x2x8,z!

5
i

2p
lim
z→0

E
0

p

dxE
0

p

dx8@u0~x!2u0~x8!#2
]

]x8

3G2~x2x8,z!, ~4.10!

where

G2~x,z!5G~z1 ix !2G~z2 ix !5
2 i sin~kx!

cosh~kz!2cos~kx!
,

~4.11!

and we have used the fact that the integrals
u0

2(x)]G2/]x8 and u0
2(x8)]G2/]x8 vanish because of the

periodic boundary conditions in thex direction. Finally, we
perform the limitz→0 in Eq.~4.10! and obtain the following
simple expression for the distortion free energy:
9-4
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UNIFORM AND NONUNIFORM TEXTURES OF A . . . PHYSICAL REVIEW E64 031709
Fd5
pK

4p2E0

p

dxE
0

p

dx8
@u0~x!2u0~x8!#2

sin2@p~x2x8!/p#
. ~4.12!

In what follows we use dimensionless quantities:F̃5F/K,
b̃i5bi /p ( i 51,2), andr 15p1 /p. Thus, the total free energ
as a functional ofu0 is given by

F̃5
p

4E0

1

dxE
0

1

dx8
@u0~x!2u0~x8!#2

sin2@p~x2x8!#
1

1

2b̃1
E

0

r 1
sin2u0~x!dx

2
1

2b̃2
E

r 1

1

sin2u0~x!dx, ~4.13!

where nowx andx8 are measured in units ofp.
To find the equilibriumu0(x) one can minimizeF̃ and

then solve the resulting nonlinear integral equation. Alter
tively, one can minimizeF̃ directly by means of numerica
methods. In Sec. IV B we take the latter route; first, howev
we study the problem using a simple approximation to
functional F̃@u0#.

A. Square gradient approximation

It is instructive to consider first a simple approximatio
that results in a soluble equation foru0(x). Here we restrict
ourselves to smallu0 when sinu0'u0. Moreover, we make
use of the fact that the main contribution to the distorti
free energy in Eq.~4.13! comes from the regionx'x8,
where @u0(x8)2u0(x)#/sin@p(x82x)#'(1/p)du0(x)/dx.
This approximation results in a simple square gradient fo
of F̃:

F̃5
1

2E0

1F 1

2p S du0

dx D 2

1V~x!u0
2~x!Gdx, ~4.14!

and the Euler-Lagrange equation is of the Schro¨dinger equa-
tion type,

1

2p

d2u0

dx2
2V~x!u0~x!50, ~4.15!

with the potential of a well,

V~x!5H 1/b̃1 , 0<x,r 1

21/b̃2 , r 1<x,1.
~4.16!

The general solution of Eq.~4.15! is

u0~x!5A1ek1x1B1e2k1x for 0<x,r 1

u0~x!5A2sin~k2x!1B2cos~k2x! for r 1<x,1,
~4.17!

whereki5A2p/b̃i , for i 51,2. To determine the four coeffi
cients in Eq.~4.17! we use the condition that bothu0 and
du0 /dx are periodic and continuous founctions, which lea
to a set of four linear equations forAi and Bi . A nonzero
03170
-

r,
e

s

solution exists only if the matrix of the equation is singula
otherwise only theu050 solution is possible. The appea
ance of a nonzero solution of Eq.~4.17! means the loss o
stability of the uniform solution. After some algebra we fin
that it occurs when the following relation between the p
rametersb̃1 , b̃2, andr 1 holds:

Ab̃1 /b̃25
$cos@k2~12r 1!#61%$cosh~k1r 1!71%

sin@k2~12r 1!#sinh~k1r 1!
.

~4.18!

First, let us consider relation~4.18! in the asymptotic lim-
its of large or smallb̃1. In the limit of b̃1→` we find

1

b̃2

;
r 1

12r 1

1

b̃1

2
pr 1

2

12r 1
S 1

2
2

r 1

6 D S 1

b̃1
D 2

, ~4.19!

which reduces to relation~4.1! when the second order term
in b̃1

21, describing the effect of distortions inF̃, is neglected.

In the opposite limit of strong anchoring (b̃1→0) we find

1

b̃2

;
p

2
~12r 1!22, ~4.20!

which means thatb̃2
21 saturates at large values ofb̃1

21. The

bifurcation value ofb̃2
21 for an arbitrary value ofb̃1

21 and at
constantr 1 can be determined numerically. In the next su
section, we compare the square gradient approximation w
the results of numerical minimization ofF̃ given by Eq.
~4.13!.

B. Numerical minimization of the free energy

To minimize numerically the free energy functional give
by Eq. ~4.13! we first express it in a discrete form by defin
ing u0(x) on a meshxn5nh, where n50, . . . ,N and h

51/N. Thus, F̃ becomes a function of variablesu0
n

5u0(xn), and because of the periodic boundary conditi
u0

N5u0
0 the number of independent variables isN. The dis-

tortion term in Eq.~4.13! assumes the following discret
form:

F̃d5
p

4 H h2 (
n50

N21

(
nÞn850

N21
~u0

n2u0
n8!2

sin2@ph~n2n8!#

1
1

p2 (
n50

N21

~u0
n112u0

n!2J , ~4.21!

where the second term corresponds to integration over
regionx'x8, in which the integrand can be approximated
p22(du0 /dx)2. Then, we minimizedF̃(u0

0 , . . . ,u0
N21) us-

ing the conjugate gradient algorithm@22#. Most of the calcu-
lations were performed withN5200 but in selected cases w
have verified the results usingN5500.

The main results of our numerical calculations are p
sented in Figs. 3–7. In Fig. 3, we show the phase diagram
9-5
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the (p/b1 ,p/b2) plane, for the two stripe width ratio
p1 /p251 @Fig. 3~a!# andp1 /p253 @Fig. 3~b!#. The regions
where the uniform configurationsu(x,z)50 and u(x,z)
5p/2 are stable are called theU0 phase and theUp/2 phase,
respectively. These uniform textures become unstable a
the solid lines. In between, there is a region of stability o
nonuniform surface texture. Our calculations show that
phase transitions between theU0 phase or theUp/2 phase
and the nonuniform texture~NT! are continuous. In Fig. 3~a!,
the phase diagram is symmetric with respect to the diago
p/b15p/b2. When the ratiop1 /p2.1 the region of stability
of theU0 phase grows, whereas the region of stability of t
Up/2 phase shrinks@Fig. 3~b!#. Note that the phase diagram
for p1 /p2,1 can be easily deduced from the casep1 /p2
.1 by interchangingp1 with p2 andb1 with b2. The dashed
lines in Fig. 3 correspond to the strong anchoring limit
one of the stripes discussed in the previous section.

In Figs. 4 and 5, we plot the bulk value of the direct
orientationub5u(x,z5`) againstp/b2 at fixed p1 /p2 and

FIG. 3. Phase diagram obtained from the numerical minimi
tion of the free energy functional, for two values of the stripe wid
ratio: ~a! p1 /p251 and~b! p1 /p253. U0 , Up/2 , and NT denote
the uniform homeotropic, the uniform planar, and the nonunifo
textures, respectively. In the limit of strong anchoring, the transit
lines approach the dashed lines.
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p/b1. Even if the surface texture is not uniform the direct
field becomes uniform at infinite distance from the substra
Thus,ub is independent ofx and it corresponds to the effec
tive anchoring direction induced by the inhomogeneous s
strate. As we have already shown,ub is equal to the average
of u0(x) over the periodp @see Eq.~4.6!#. ub(p/b2) for
p1 /p251 andp/b151 is shown in Fig. 4~a!. For this rela-
tively small value of the anchoring strength on the home
tropic stripe, we observe two phase transtions between
uniform and nonuniform textures. In the NT region,ub in-
creases from zero top/2, starting and ending at transitio
lines with infinite slope. In Fig. 4~b!, we present the case o
p1 /p251 andp/b1510. The latter value greatly exceeds th
asymptotic value for the transition between theUp/2 and NT
phases. Thus, the curveub(p/b2) saturates at some valu
well below p/2. Similar plots are shown in Fig. 5~a! (p/b1
51) and Fig. 5~b! (p/b1510), for the stripe width ratio
p1 /p253. Here againp/b151 is below andp/b2510 is
above the asymptotic value for the NT-Up/2 transition.

The director orientationu(x,z) as a function ofx at fixed
distance from the substrate is shown in Figs. 6 and 7.

-

n

FIG. 4. Bulk value of the director orientation as a function
p/b2 in the case of equal stripe widths (p1 /p251), for ~a! p/b1

51 and~b! p/b1510.
9-6
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obtainu(x,z) from u0(x) we have used formula~4.3!. It is
clear from the Fourier expansion~3.2! that the decay of
u(x,z)2ub for z@p is governed by then51 term. Indeed,
we observe that larger deviations ofu(x,z) from ub ~hori-
zontal line! occur only forz,p. Thus, the thickness of th
surface layer is comparable top. In all cases presented i
Figs. 6 and 7 the choice of parameters corresponds to the
phase. The case of equal stripe widths (p1 /p251) is shown
in Fig. 6. The profiles shown in Figs. 6~a! and 6~b! have been
obtained for points in the (p/b1 ,p/b2) plane close to the
U0-NT transition line; therefore,ub is small. While the pro-
files in Fig. 6~a! are roughly sinusoidal, in Fig. 6~b! they are
highly asymmetric because in the latter casep/b1@p/b2.
Analogous behavior would be found for points near t
NT-Up/2 transition line, withub close top/2. For compari-
son, in Fig. 6~c!, we showu(x,z) for a point on the phase
diagram located far from both transition lines. The case
different stripe widths is presented in Fig. 7, forp1 /p253.
Here, the asymmetry of the profiles reflects the difference
both the anchoring strength and the stripe width.

Finally, in Fig. 8, we compare theU0-NT transition lines
obtained from numerical minimization of the free energy a

FIG. 5. Bulk value of the director orientation as a function
p/b2 in the case ofp1 /p253, for ~a! p/b151 and~b! p/b1510.
03170
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from application of the square gradient approximation,
p1 /p251 andp1 /p253. Of course, using the same approx
mation we can also find an approximate location of t
NT-Up/2 transition line, which is not shown in Fig. 8, how

FIG. 6. Director orientation as a function ofx, for a few values
of the distance from the substrate. In this plotp1 /p251, and~a!
p/b151, p/b250.79, ~b! p/b1510, p/b252.74, ~c! p/b151,
p/b251.
9-7
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ever. It is clear that the square gradient approximation
comes increasingly accurate when the anchoring stren
decrease, whereas in the opposite limit we observe la
deviations from the real transition line.

FIG. 7. Director orientation as a function ofx, for a few values
of the distance from the substrate. In this plotp1 /p253, and~a!
p/b151, p/b252.08, ~b! p/b156.5, p/b255.24, ~c! p/b151,
p/b253.
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V. CONCLUSIONS

We have studied the nematic phase in contact with a s
substrate of periodic surface structure using the Frank-Os
description of the liquid crystal. The reason for using t

description of the system in terms ofn̂ rather than in terms of
the tensorQ ~the Landau–de Gennes description! is that the
extrapolation length, which is a natural length scale in s
face problems, is much more easily accessible in the for
than in the latter. We have assumed that the substrate su
consists of regions of competing alignments: homeotropic
one of the stripes and planar along the normal to the str
on the other. This competition may result in either a unifo
or a nonuniform texture. The latter is favored when t
stripes have comparable widths and anchoring streng
When the anchoring strength on one of the stripes is m
larger than on the other, the regions with stronger ancho
may enforce an unfavorable alignment in regions w
weaker anchoring, which results in a uniform texture. T

FIG. 8. Comparison of theU0-NT transition lines obtained from
the square gradient approximation~dashed line! and from numerical
minimization of the free energy functional~solid line!: ~a! p1 /p2

51 and~b! p1 /p253. For clarity, the NT-Up/2 transition line is not
shown.
9-8
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resembles the situation when a nematic slab is placed in
external field normal to the alignment favored by the wa
and the field is too weak to perturb this alignment.

We have also considered the limit of strong anchoring
one of the stripes and weak anchoring on the other. An in
esting bifurcation problem arises when the widthp1 of the
strong anchoring stripe tends to zero. Now the questio
about the minimal value of the anchoring energywmin in the
weak anchoring regions necessary to perturb the alignm
induced by the strong anchoring regions. Intuitively it mig
appear that this minimal value should also tend to zero.
the other hand, any continuous perturbation of the initial u
form alignment should satisfy suitable boundary conditio
along the borderlines between the regions of strong and w
anchoring. The usual procedure of taking the Fourier tra
form of the perturbation and truncating the Fourier series
finite numberN leads to the conclusion thatwmin(N)Þ0.
p

t,
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However, when the number of Fourier components increa
wmin(N) decreases and the whole procedure does not lea
any definite conclusion. Moreover, our results suggest
the order of taking the limitsN→` andp1→0 does matter
in this case. Probably we observe the following situatio
The perturbation corresponding to the truewmin tends to a
constant profile whenp1→0, which means that the stron
anchoring regions transform into disclination lines. To obta
the correct asymptotic behavior ofwmin(p1) for p1→0 as
well as the functional form of the corresponding perturb
tion, a more subtle bifurcation analysis is needed, and stu
of this problem are in progress.
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@11# B. Jérôme and P. Pieranski, J. Phys.~France! 49, 1601~1988!.
l.

@12# A. Poniewierski and A. Samborski, Liq. Cryst.27, 1285
~2000!.

@13# D.W. Berreman, Phys. Rev. Lett.28, 1683~1972!.
@14# S. Faetti, Phys. Rev. A36, 408 ~1987!.
@15# G. Barbero, T. Beica, A.L. Alexe-Ionescu, and R. Moldovan,

Phys. II2, 2011~1992!.
@16# T.Z. Qian and P. Sheng, Phys. Rev. Lett.77, 4564~1996!.
@17# T.Z. Qian and P. Sheng, Phys. Rev. E55, 7111~1997!.
@18# Baek-woon Lee and N.A. Clark, Science291, 2576~2001!.
@19# A. Rapini and M. Papoular, J. Phys.~Paris!, Colloq.30, C4-54

~1969!.
@20# P. Pieranski, F. Brochard, and E. Guyon, J. Phys.~France! 33,

681 ~1972!.
@21# J. Wahl and F. Fisher, Mol. Cryst. Liq. Cryst.22, 359 ~1973!.
@22# W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vett

ling, Numerical Recipes~Cambridge University Press, Cam
bridge, 1986!.
9-9


