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Uniform and nonuniform textures of a nematic liquid crystal in contact
with an inhomogeneous substrate
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A semi-infinite sample of a nematic liquid crystal in contact with a flat solid substrate, possessing an
alternating stripe pattern of planar and homeotropic anchoring, is studied in the framework of the Frank-Oseen
model. The case of strong anchoring on one of the stripes is treated by means of bifurcation analysis, whereas
the case of weak anchoring is studied by means of numerical minimization of the free energy functional. We
find a second order phase transition between the uniform homeotropic or planar alignment and a distorted
director configuration. The effect of the stripe width and the anchoring strength on the location of this transition
and on the bulk orientation of the nematic director is also studied.
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I. INTRODUCTION In more recent work, Qian and Shefig,17] also applied
the idea of a periodic substrate to an alternating stripe pattern
Nematic liquid crystals are anisotropic fluids exhibiting a Of random planar and homeotropic substrate potentials, with

long range orientational order of uniaxial symmetry, with thePeriodicity in the mesoscopic range, i.e0.5 um or less.
. ) . - While the prior studies of inhomogeneous substrates consid-
local symmetry axis defined by a unit vectorcalled the

: . . ered the elastic energy only in the Frank-Oseen form, Qian
director. It is well known that the surface of a solid substrate 5 Sheng apply the Landau—de Gennes formaljip

as well as other limiting surfaces, have the ability to orient where the tensor nematic order paraméQeis used instead

along a well defined direction called the easy d&isOnthe  of n_ Assuming stripes of equal width they found two stable
phenomeAnoIogicaI level the easy axis is defined as the orier%'tates of the bulk director: thez state, withn in the plane
tation of n preferred by the liquid-crystal—substrate interac-normal to the surface and parallel to the stripes, andxthe
tions, i.e., that minimizing the surface free enefgyin the  giate withn parallel to the surface and normal to the stripes.
absence of bulk distortions or external fields. This substrat@, first order phase transition between these two states can be
induced alignment of liquid crystals, known as anchoringinduced either by changing the temperature or by changing
[1,2], has important practical applications. To achieve thene periodicity of the structure. It is argued that the transition
desired director orientation and anchoring strength variougccurs when the elastic energy becomes unfavorably large
substrates and surface treatments are {iBed]. ~ compared to the surface alignment potential, and this is ob-
In many model studies of liquid-cystal-substrate inter-seryed for decreasing periodicity. This study shows that de-
faces the details of surface structure at the nanometer scag%ite the azimuthal degeneracy in each stripe the whole
are neglected and the substrate surface i; treated as homoggycture does align the liquid crystal in a well defined azi-
neous[8-12]. On the other hand, a long time ago Berremanmytha| direction. Indeed, in a very recent experimental work,
[13] showed that due to the elastic strain energy anisotropi¢ ee and ClarK 18] have demonstrated that molecular-scale
surface roughness can induce a molecular orientation para”ﬁhisotropy or roughness is not required to achieve liquid
to the direction of grooves produced by rubbing the substratgrystal alignment. They showed that the alignment can be
surface. To obtain the azimuthal anchoring energy he asnquced by a surface lithographically divided into two dis-
sumed a sinusoidal shape of the surface, with wavelengtfinct molecularly smooth isotropic regions. Thus, it is gov-
~200 A and amplitude~10 A, and the director locally emed only by the pattern of boundary lines between the iso-
parallel to the surface, i.e., strong polar anchoring. The lattefropic regions and by the liquid crystal elasticity. The
assumption was generalized by Fa¢ftd], who took into  sjmplest pattern studied experimentally[it8] consisted of
account a finite value of the polar anchoring energy. Anothehomeotropic and random planar stripes of total width in the
type of nonuniform surface was considered by Barledral. range of 10 xm.
[15]. In their work, the surface roughness is not considered | this paper, we apply the model introduced by Barbero
explicitly; nevertheless, the spatial distribution of easy direct a. in [15] to the specific case of mixed homeotropic and
tions is taken into account. This is achieved by assuming thg§janar anchoring, where the latter is in the direction normal
the surface has a periodic structure with two stripes charagy the stripes. With this choice of anchoring direction it is
terized by different easy directions and, in general, differenpossible that despite the periodic surface structure the adja-
widths. In addition,n is constrained to stay in the plane cent nematic liquid crystal will remain uniform. This possi-
normal to the stripes, and in the case of weak anchoring thbility was not considered ifn15], however. Therefore, we
quadratic approximation for the anchoring energy is appliedstudy in detail the relation between the width and the anchor-
The latter assumption implies that the easy directions shoulithg strength of the stripes and the director configuration in
not differ too much from each other. Thus, this model is usedhe surface region and in the bulk. In particular, we find the
to study the effective easy direction induced by the periodicstability limits of the homeotropic and planar textures in
substrate as well as the effective surface energy. terms of the model parameters. To obtain the phase diagram

1063-651X/2001/648)/0317099)/$20.00 64 031709-1 ©2001 The American Physical Society



S. KONDRAT AND A. PONIEWIERSKI PHYSICAL REVIEW E64 031709

we apply the Frank-Oseen formalism and the Rapini- V26(x,2)=0 (2.9

Papoular{19] form of the anchoring energy. We also con-

sider the limit of strong anchoring on one of the stripes andvith the boundary conditions

the competition between the alignments induced by the weak

anchoring and strong anchoring stripes when the width of the K(96192)|;-0=W100(X)

latter tends to zero. (2.5
Our paper is organized as follows. In Sec. Il, we recall the K(98/2)| ;0= —Wa0p(x) for py=x<p.

model introduced if15]. The case of strong anchoring on

one of the stripes is studied in Sec. Il by means of a bifur- . STRONG ANCHORING LIMIT

cation analysis. In Sec. IV weak anchoring on both stripes is . .

assumed. To study this case we first derive the free energy When th? nematic-nematié,, and the nematm-substratg

the system as a functional of the surface director alone. Mini- "S interactions are of the same order then the extrapolation

mization of an approximate form of this functional leads to alengthb— K/W~aVnn/Vns~a, wherea denotes a molecular

Schralinger type differential equation, which can be easilyg'ingn;r']%né;rgergé'?ht:tetﬁgné!?;(;g l:)rpghlttaltsojr?s;!cﬂti%tg ?fuatce
solved(Sec. IV A). The results of the exact numerical mini- ., u : : ! u

mization of the free energy are presented in Sec. IV B. Fi-is fixed[1]. This is known as the strpng anchoring limit. Let
nally, Sec. V is devoted to the conclusions. us assume that the strong anchonng_ occurs on one of '_the
' stripes, and we take it to be the stripe with homeotropic

anchoring. This means that the extrapolation length

=K/w;=0 andfy(x) =0, for 0<x<p,. The planar anchor-
We consider a flat substrate whose surface is physically dng on the stripep;<x<p is assumed to be weak, i.é;

chemically inhomogeneous. This inhomogeneity is charac=K/w,# 0.

terized by a periodic stripe pattern of wavelengtalong the It is rather obvious that for smail/, the strong homeo-

x direction; thez axis is perpendicular to the surface, and thetropic anchoring prevails and(x,z)=0 everywhere. How-

y axis is parallel to the stripes. We assume homeotropic arever, the decrease of the widfh or the increase ofv,

choring on the stripe €x<p,, wherep; is its width, and  should effectively weaken the effect of strong anchoring and

planar homogeneous anchoring along xhdirection on the eventually would result in a nonuniform director configura-

stripep;<x<p. Due to the translational invariance in tge tion. To investigate the loss of stability of the uniform

direction n depends only orx andz We also restrict our- %0(x,2) =0 state the free energy in EQ.3) is approximated

selves to the case whenis everywhere parallel to thez by

plane, i.e.,n=xsin#+zcosd (no twist deformation As- K(p (= , Wp (P )
suming that the bend and splay elastic constants are equal F= Efo dxfo dZ Vo(x,2)]°~ 7f dx 6o(X)]°,
(K1=K3=K), which is not far from experimental datsee, Pl 3.1)
e.g.,[20,21)) and is consistent with the Landau—de Gennes '
theory, we obtain the distortion free energy per unit lengthwhich means that smatfl, is assumed. Now we seek a peri-

for 0=x<p,,

Il. THE MODEL

and per period, odic solution of the Laplace equatiof2.4) satisfying the
boundary conditiordy(x) =0, for 0<x<p;. A general peri-
Fd=5fdeJ'de(V0)2. (2.1) odic solution of the Laplace equation has the form of the
2)o Jo Fourier expansion
For the surface free energy we use the Rapini-Papoular ” ) B
expressior]19] 9(x,z)=n§O [69sin(knx)+ 69cogknx)]e "<
1 (p (3.2
F =—f dXW(X)sin?fo(X), (2.2
* 2)o wherek=2/p, and 6 and 6" are to be determined from

) _ the boundary condition. The distortion part of the free energy
where 6o(x)=6(x,z=0), and w(x) is the anchoring takes the following simple form:
strength. In the homeotropic region €X<p;) w(Xx)=wy,
whereas in the planar regiop{=x<p) w(x)=—w,, with K Z
w;,W,=0. Thus the total free energy per period as a func- Fa=—- > n[(69)2+ (6. (3.3
tional of 6(x,z) assumes the following form: n=t

In general, 6p(x) satisfying the boundary condition for 0

K p » W; (P2 . . A
F= Ef dxf dz(V )2+ 7J dx sinf6(X) <x<p; and continuous at=p; andx=p is given by
0 0 0
Wo (o o(X) =0 (x—p1)f(x), (3.9
2 .
2 pldxsmzao(x). 23 where ®(x) is the Heaviside step function arf@x) is an
arbitrary function satisfying the continuity conditidr{p,)
Minimization of F leads to the Laplace equation =f(p)=0. Therefore, it can be expressed as follows:
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f<x>=n§1 B, sink'n(x—py)], (3.5

wherek’ = 7/p, andp,=p— p;. To study the stability of the
0(x,z) =0 solution we expresB in terms of the amplitudes
B, . For the surface part we have

PHYSICAL REVIEW B4 031709

2(p
0&’):5 f Bo(x)cog nkx)dx
0

n'[cog2mnp, /p)—(—1)"']
(n'p/2py)?—n?

__Pp
2’7Tp2

> B

n’

n/

o (3.9
w
Fem— P02 3 B2, (3.6
- Finally, we obtain for the free energy
and to obtairF 4 we first find 6 and 6 from Egs.(3.2),
(3.3, and(3.5), which forn>0 gives L
K P2
2 p F:_ n,n"‘lf rrr__5rrr B rBH,
0§f’:—f Bo(X)sin(nkx)dx 4 21 ,El SR PR
pJo (3.9
P n’'sin(2mwnp./p) 37
S 2mp, 5T (n'pl2p,)2—n? ' where 8, is the Kronecker delta symbol, and
|
2 nl+n7/ n/ n//
p n{1+(-1) —[(=D)" +(=1)" Jeog27np,/p)}
W= 2 ) 2_ 2 2_ 2 : : (3.10
2mp; n=1 [(n"p/2p3)=—n=][(n"p/2p;)°—n7]

When the quadratic forr(8.9) is positive definite the uni-
form solution #=0 is stable. At fixedp,/p,, the loss of
stability of the #=0 solution occurs when the ratio, /b,
becomes equal to the smallest eigenvalue of the matri
¥, . Truncation of the Fourier expansidB.5 after the
first term results in the following condition for the stability
limit:

1+p1/p,)?
P2 ipalpa= P oy, (31
2 o
where
“ 1+cog2mnx/(1+x)]
= | 31
v nglp [(1+x)%/4—n?]? (312

From this simple approximation we obtain the qualitatively
correct shape of the bifurcation line, which is shown in Fig.
1. However, the rigorous procedure requires diagonalizatio
of the quadratic form(3.9). We have performed numerical
diagonalization, truncating the Fourier expansionf ©f) at
n=N, for various values oN, and the bifurcation lines ob-

tained in this way are presented in Fig. 1. In Fig. 2, we plot

p, /b, againstN for selected points on the bifurcation line. It
is clear that the larg& asymptotic behavior op,/b, de-
pends on the ratip, /p,. We observe that fop, /p,#0 the
ratio p, /b, tends to a nonzero limit wheN—cc. However,
the case, /p,=0 is different as thep, /b, seems to tend to
zero, albeit very slowly. Since the limil—c should be
performed first this behavior suggests thatb, as a func-
tion of p,/p, is discontinuous ap,/p,=0, i.e., it has a

nonzero limit wherp,/p,— 0 but vanishes whep;=0. Of
course, the matrix¥',,,» is by definition positive definite
[see Eq.(3.3] and F4=0 only if y,=const, for 0<x<p,
which is incompatible with the boundary conditions »at
=0 andx=p, however. On the other hand, a constant profile
can result from the Fourier expansi®5) when the number
of Fourier components tends to infinity. This explains why
the smallest eigenvalue d&f ,/,» vanishes fop,;=0. When

25

r (] 03 0 01;05 0.01
— N=1
05 —— N-f0
——— N=200
0 A
0 1 2
p./p,

FIG. 1. Bifurcation line showing the stability limit of the uni-
form homeotropic texture in the case of strong anchoring on the
homeotropic stripe, obtained for different numbétsof Fourier
components in the expansion of a nonuniform surface perturbation
[see Eq.(3.5]. The inset shows the region of smal| /p, for N
=200 (diamond$, N=500 (squares andN= 1000 (circles.
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18 - Ap,/p=0.53
P1/p2=

+p,/p.=0.09
u p,/p.=0.03
v p./p.=0.001

13 .

p2/b2 -
0.8
03

0 50 100 150 200

FIG. 2. Bifurcation value op,/b, as a function of the number
of Fourier components, for a few values of the ratig/p,.

p,# 0 the above argumentation does not hold, however, be-

causeF 4 in Eq. (3.3 diverges if ;= const forp; <x<p.

IV. WEAK ANCHORING

In this section, we assume that anchoring on both the
planar and the homeotropic stripes is of finite strength, which

PHYSICAL REVIEW E64 031709

0(x,z)= %fopdx’ 0o(X")g(x' —x,2), (4.3

where the propagatay(x,z) satisfies the Laplace equation
with the boundary condition

lim g(x,z)=pé8(x),

z—0

(4.9

where §(x) is the Diracé function. It is straightforward to
show that

o0

g(x,2)= >, exp(—|n|kz+inkx) (4.5

with k=2x/p. Note also that becausg(x,z)—1 whenz
—oo the bulk value off can be expressed from E@.3) in
terms of 8, as follows:

is usually referred to as weak anchoring. Now the substrate is

characterized by two nonzero extrapolation lengths

=K/w,; andb,=K/w,, and the free energy of the system is
given by Eq.(2.3). In the absence of the distortion term in

Eqg. (2.3 there would be only homogeneous statéx,z)

=0 and 6(x,z)=m/2, and the transition between them

would occur when

by p1

— =, 4.1
b, p2 @9

1(p
6b=—f dxfy(X). (4.6)
PJo
For convenience we define a complex function
G({)=D, e k= ; 4.
(0=2 oW 4.7
hence,
0(x,2)=1+G(z+ix)+G(z—ix)=1+G*(x,2),
4.9
where
cogkx)—e k2
G*(x,2) kx) 4.9

- coshkz)—cogkx)

Substituting Egs(4.3) and(4.8) into Eq.(4.2) and replac-

To take into account distortions we proceed as follows. Firsting dG(z=ix")/dz by +idG(z=ix")/dx" we obtain

we minimize F4 with respect to all function®(x,z) that
satisfy the boundary conditio®(x,z=0)= 6y(x), where
0p(x) is an arbitrary continuous and periodiwith the pe-
riod p) function of x. This minimization results in the
Laplace equatioV26=0; thus,F4 can be transformed to

p oo
2Fd/K=f dxf dz(V 6)?
0 0

= fopdxfoxdz[vwv 0)—V26]

) p a0
=—Iim f dx0—

z—-070 Jz ’ (42)

where we have used the periodicity ®éfind the bulk condi-
tion #— const forz—oo. Now F4 can be explicitly expressed
as a functional o®y(x). To show this we presert(x,z) as
a convolution

i p p J
2Fd/K=——IimJ' de dX’ Op(X) Op(X')—G ™ (x—x",2)
0 0 ax’

z—0

_i_' P P ’ _ ’ 21
= —lim fo dxfO dX'[ Op(X) — 0g(X")] Py

2p2~>0
XG ™ (x—x',2), (4.10
where
G- G(z4] Glz—ix)= —i sin(kx)
(X,2)=G(z+ix)— (Z_IX)_cost(kz)—cos(kx)’
(4.11
and we have used the fact that the integrals of

65(x)dG~/ax’ and 63(x')dG~/ax’" vanish because of the
periodic boundary conditions in thedirection. Finally, we
perform the limitz— 0 in Eq.(4.10 and obtain the following
simple expression for the distortion free energy:
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K (p b [06(X)— Oo(x)]? solution exists only if the matrix of the equation is singular;
f f ' — - (4.12  otherwise only thegdy=0 solution is possible. The appear-
sif[ m(x—x")/p] ance of a nonzero solution of E¢.17) means the loss of

] ] e stability of the uniform solution. After some algebra we find
In what follows we use dimensionless quantiti€s=F/K,  that it occurs when the following relation between the pa-

Bi=bi /p (i=1,2), andr,=p,/p. Thus, the total free energy rametersBl, '52’ andr, holds:
as a functional o, is given by

I~ {cogky(1—ry)]=1H{coshk,ry) + 1}
|~:=%fldxfldx’[00()()_ P ) + i smzao(x)dx by /by~ sinky(1—ry)]sinh(kyr ;) '

sif[w(x—x")]  2byJo (4.18
1 First, let us consider relatio@.18 in the asymptotic lim-
"5, rlsinzao(x)dx, (413 jts of large or smalb,. In the limit of B;—< we find
where nowx andx’ are measured in units @t
To find the equilibriuméy(x) one can minimizeF and
then solve the resulting nonlinear integral equation. Alterna-
tively, one can minimizé directly by means of numerical Which reduces to relatiot4.1) when the second order term
methods. In Sec. IV B we take the latter route; first, howeverjn b; *, describing the effect of distortions #, is neglected.
we study the problem using a simple approximation to then the opposite limit of strong anchoring{—0) we find
functional F[ 6,].

1 r, 1 w21 or\[1
B, B, 2 6

2
= =, 4.1
1—I’l bl 1—I’1 bl) ( 9

1

A. Square gradient approximation B—2~—(1—r1) g (4.20
It is instructive to consider first a simple approximation

that results in a soluble equation f@g(x). Here we restrict which means thab, * saturates at large values of *. The

ourselves to smalb, when sinfy~ 6. Moreover, we make pifurcation value ob, * for an arbitrary value ob; * and at

use of the fact that the main contribution to the dIStOrtlonconstanh‘l can be determined numenca”y In the next sub-

free energy in Eq.4.13 comes from the regiox~x’,  section, we compare the square gradient approximation with

where [ 6o(x") = fo(x) I/sina(x =x)]~ (1/7r)d00(x)/dx the results of numerical minimization d¥ given by Eq.
This approximation results in a simple square gradient fomt4 13.

of F:
d6, B. Numerical minimization of the free energy
2
Zf [27.,<_ +V(x) bp(x) |dx, (4.14 To minimize numerically the free energy functional given
by Eqg.(4.13 we first express it in a discrete form by defin-
and the Euler-Lagrange equation is of the Sdimger equa-  INg o(x) on a meshx,=nh, wheren=0,... N and h
tion type, =1/N. Thus, F becomes a function of variableg]
, —ao(xn) and because of the periodic boundary condition
1 d%0, 65 = 69 the number of independent variablesNs The dis-
27 dy2 _V(X) 0o(x)=0, @19 tortion term in Eg.(4.13 assumes the following discrete
form:
with the potential of a well, B B )
£, ™ E E (93— A )2
b o=sx<r =z o v g
—1/b,, risx<l.
1
The general solution of Eq4.15) is 2 (6 = 90)2]’ (4.2)

Oo(x)=A,e*+Be kX for 0<x<r, _ _
where the second term corresponds to integration over the
0o(X) = A,Sin(K,X) + Bocog ko) for ry<x<1, regionx=x', in which the integrand can be approximated by
(417 7 %(d6y/dx)%. Then, we minimized (69, ...,05 1) us-

_ ing the conjugate gradient algorithr®2]. Most of the calcu-
wherek;= v2/b;, for i=1,2. To determine the four coeffi- lations were performed witN =200 but in selected cases we
cients in Eq.(4.17) we use the condition that bothy and  have verified the results using=500.
df,/dx are periodic and continuous founctions, which leads The main results of our numerical calculations are pre-
to a set of four linear equations fé; andB;. A nonzero sented in Figs. 3—7. In Fig. 3, we show the phase diagram in
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FIG. 3. Phase diagram obtained from the numerical minimiza- PE.
tion of the free energy functional, for two values of the stripe width  FIG. 4. Bulk value of the director orientation as a function of
ratio: (@) p1/p,=1 and(b) p1/p,=3. Uy, U5, and NT denote p/b, in the case of equal stripe widthg(/p,=1), for (a) p/b,;
the uniform homeotropic, the uniform planar, and the nonuniform=1 and(b) p/b;=10.
textures, respectively. In the limit of strong anchoring, the transition
lines approach the dashed lines. p/b,. Even if the surface texture is not uniform the director

field becomes uniform at infinite distance from the substrate.

the (p/b,,p/b,) plane, for the two stripe width ratios Thus,#8, is independent ok and it corresponds to the effec-
p./p,=1 [Fig. 3@] andp,/p,=3 [Fig. 3b)]. The regions tive anchoring direction induced by the inhomogeneous sub-
where the uniform configuration®(x,z)=0 and 6(x,z) strate. As we have already show, is equal to the average
= /2 are stable are called thé&, phase and the) ., phase, 0f 6y(x) over the periodp [see Eq.(4.6)]. 6y(p/by) for
respectively. These uniform textures become unstable along, /p,=1 andp/b;=1 is shown in Fig. 4a). For this rela-
the solid lines. In between, there is a region of stability of atively small value of the anchoring strength on the homeo-
nonuniform surface texture. Our calculations show that thdropic stripe, we observe two phase transtions between the
phase transitions between thg, phase or theJ ., phase uniform and nonuniform textures. In the NT regio, in-
and the nonuniform texturT) are continuous. In Fig.(3d), creases from zero tar/2, starting and ending at transition
the phase diagram is symmetric with respect to the diagondines with infinite slope. In Fig. é), we present the case of
p/b,=p/b,. When the ratiq, /p,> 1 the region of stability p;/p,=1 andp/b;=10. The latter value greatly exceeds the
of the U, phase grows, whereas the region of stability of theasymptotic value for the transition between thg, and NT
U, phase shrink§Fig. 3(b)]. Note that the phase diagram phases. Thus, the curvé,(p/b,) saturates at some value
for p,/p,<1 can be easily deduced from the casgp,  well below /2. Similar plots are shown in Fig.(® (p/b;
>1 by interchangingp, with p, andb; with b,. The dashed =1) and Fig. %b) (p/b;=10), for the stripe width ratio
lines in Fig. 3 correspond to the strong anchoring limit onp;/p,=3. Here againp/b;=1 is below andp/b,=10 is
one of the stripes discussed in the previous section. above the asymptotic value for the NO'-, transition.

In Figs. 4 and 5, we plot the bulk value of the director The director orientatior(x,z) as a function ok at fixed
orientation§,= 6(x,z=) againstp/b, at fixedp,/p, and distance from the substrate is shown in Figs. 6 and 7. To
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FIG. 5. Bulk value of the director orientation as a function of
p/b, in the case op,/p,=3, for (a) p/b;=1 and(b) p/b,=10. ol __ ;:8_05
---- 2203
obtain 6(x,z) from 6y(x) we have used formul&d.3). It is — oulk
clear from the Fourier expansiof8.2) that the decay of 5’47
0(x,z) — 6y, for z>p is governed by the=1 term. Indeed, —.
we observe that larger deviations 6fx,z) from 6, (hori- 2- 45 .-
zontal line occur only forz<p. Thus, the thickness of the & \
surface layer is comparable fo In all cases presented in a3 F\\
Figs. 6 and 7 the choice of parameters corresponds to the NT \\
phase. The case of equal stripe widtps {p,=1) is shown ar | N
in Fig. 6. The profiles shown in Figs(® and @b) have been
obtained for points in thep/b,,p/b,) plane close to the
Uo-NT transition line; therefored, is small. While the pro- %, o2 oa o5 08 "
files in Fig. §a) are roughly sinusoidal, in Fig.(B) they are x/p

highly asymmetric because in the latter casé,>p/b,.

Analogous behavior would be found for points near the FIG. 6. Director orientation as a function gf for a few values

NT-U,, transition line, with6, close ton/2. For compari- of the distance from the substrate. In this pit/p,=1, and(a)

son, in Fig. 6c), we showd(x,z) for a point on the phase P/bi=1, p/b,=0.79, (b) p/b,=10, p/b;=2.74, (c) p/b,=1,

diagram located far from both transition lines. The case of/b2=1.

different stripe widths is presented in Fig. 7, for/p,=3.

Here, the asymmetry of the profiles reflects the difference irirom application of the square gradient approximation, for

both the anchoring strength and the stripe width. p1/p,=1 andp,/p,=3. Of course, using the same approxi-
Finally, in Fig. 8, we compare thg,-NT transition lines mation we can also find an approximate location of the

obtained from numerical minimization of the free energy andNT-U _,, transition line, which is not shown in Fig. 8, how-
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x/p

FIG. 7. Director orientation as a function »f for a few values
of the distance from the substrate. In this pt/p,=3, and(a)
p/b;=1, p/b,=2.08, (b) p/b;=6.5, p/b,=5.24, (c) p/b;=1,
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p/b,

FIG. 8. Comparison of thelo-NT transition lines obtained from
the square gradient approximati@ashed lingand from numerical
minimization of the free energy functionéolid line): (a) p,/p,
=1 and(b) p,/p,= 3. For clarity, the NTY _, transition line is not
shown.

V. CONCLUSIONS

We have studied the nematic phase in contact with a solid
substrate of periodic surface structure using the Frank-Oseen
description of the liquid crystal. The reason for using the

description of the system in terms ofather than in terms of

the tensoiQ (the Landau—de Gennes descripji@that the
extrapolation length, which is a natural length scale in sur-
face problems, is much more easily accessible in the former
than in the latter. We have assumed that the substrate surface
consists of regions of competing alignments: homeotropic on
one of the stripes and planar along the normal to the stripes
on the other. This competition may result in either a uniform
or a nonuniform texture. The latter is favored when the
stripes have comparable widths and anchoring strengths.

ever. It is clear that the square gradient approximation beWhen the anchoring strength on one of the stripes is much
comes increasingly accurate when the anchoring strengtiarger than on the other, the regions with stronger anchoring
decrease, whereas in the opposite limit we observe largenay enforce an unfavorable alignment in regions with

deviations from the real transition line.

weaker anchoring, which results in a uniform texture. This

031709-8
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resembles the situation when a nematic slab is placed in adowever, when the number of Fourier components increases

external field normal to the alignment favored by the wallsw,,;,(N) decreases and the whole procedure does not lead to

and the field is too weak to perturb this alignment. any definite conclusion. Moreover, our results suggest that
We have also considered the limit of strong anchoring orthe order of taking the limitt—«~ andp;—0 does matter

one of the stripes and weak anchoring on the other. An interin this case. Probably we observe the following situation.

esting bifurcation problem arises when the wigith of the  The perturbation corresponding to the trwg,;, tends to a

strong anchoring stripe tends to zero. Now the question igonstant profile whem;— 0, which means that the strong

about the minimal value of the anchoring enewgy;, in the  anchoring regions transform into disclination lines. To obtain

weak anchoring regions necessary to perturb the alignmenhe correct asymptotic behavior @f,;,(p;) for p;—0 as

induced by the strong anchoring regions. Intuitively it mightwell as the functional form of the corresponding perturba-

appear that this minimal value should also tend to zero. Otion, a more subtle bifurcation analysis is needed, and studies

the other hand, any continuous perturbation of the initial uni-of this problem are in progress.

form alignment should satisfy suitable boundary conditions

along the borderlines between the regio_ns of strong gnd weak ACKNOWLEDGMENT

anchoring. The usual procedure of taking the Fourier trans-
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